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Abstract  

This paper presents a survey report of parameter and structure learning in Bayesian network inference (BNI). The core 

objective of parameter learning is to compute the posterior density function. In this paper, parameter learning in case of 

data missing, expanding augmented Bayesian Network with multi-hypothesis nodes and updating posterior density 

function with multi-node Bayesian network inferences have been attempted successfully. Moreover, both score-based 

and constraint-based approaches have also been applied exhaustively for structure learning in Bayesian network 

inference. In each case of parameter and structure learning, numerical illustrations are presented. Finally, conclusions are 

drawn based on survey report.  

Keywords: Bayesian network inference, parameter and structure learning, posterior density function, beta function, 
binomial sample, multi-node Bayesian network, score-based approach and constraint-based approach, EM algorithm etc. 

 

1. Introduction 

Bayesian network inference is applied widely in business statistics, graph theory, operations management, machine 

learning, data mining, diagnosis, etc.  Bayesian network inference (BNI) has a solid evidence-based inference which is 

familiar to human intuition. The ultimate purpose of Bayesian network inference is to consolidate a hypothesis by 

collecting evidences. However Bayesian network causes a little confusion because there are many complicated concepts, 

formulas and diagrams relating to it. Such concepts should be organized and presented in clear manner so as to be easy 

to understand it. This is the goal of the present paper. This report includes two main significant domains of Bayesian 

network that cover parameter and structure learning in Bayesian network inference: Part 1: Parameter learning and Part 

2: Structure learning. However, there is one more significant domain of Bayesian network called inference mechanism 

mailto:hkdkarora@rediffmail.com
mailto:diwi.kaur1992@gmail.com
mailto:avadheshmaurya09@gmail.com


International Journal of Information Technology & Operations Management                                                                                                 

Vol. 1, No. 2, May 2013, PP: 11 – 28, ISSN:   2328 - 8531 (ONLINE)                                                                                                                 

Available online at http://www.acascipub.com/Journals.php 

12 

Copyright © www.acascipub.com, all rights reserved.  

which has recently dealt exhaustively by Maurya et al. [5]. By study of relevant literature, it is observed that very few 

researchers have contributed to analyse Bayesian network inference. However, scope of Bayesian network inference in 

our day-to-day life and particularly in industry and engineering is considerably too much. In this connection, [1,2,3…8] 

and references therein are some noteworthy researchers. 

2. Essence of Parameter learning 

2.1. Beta Function and Augmented Bayesian Network 

There is a family of PDF which quantifies and updates the strength of conditional dependencies among nodes by natural 

way is called beta density function, denoted as β(f; a, b) or Beta(f; a, b) with parameters a, b, N=a+b where a, b should 

be integer number > 0 
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Figure 2.1.1: Beta functions 

It means that, there are “a” successful outcomes (for example, f =1) in “a+b” trials. Higher value of “a” is, higher ratio 

of success is, so, the graph leans forward right. Higher value of “a+b” is, the more the mass is concentrate around 

a/(a+b) and the more narrow the graph is. Definition of beta function is based on gamma function described below: 
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The integral will converges if x>0, at that time, )!1()(  xx . Of course, we have  
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From formula 2.1.1, we can easily obtain  
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Suppose there is one binary variable X in network and the probability distribution of X is considered as relative 

frequency having values in [0, 1] which is the range of variable F. We add a dummy variable F (whose space consists of 

numbers in [0, 1], of course) which acts as the parent of X and has a beta density function β(f; a, b), so as to: 
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P(X=1|f) = f, where f denotes values of F 

X and F constitute a simple network which is referred as augmented BN. So X is referred as real variable (hypothesis) 

opposite to dummy variable. 

 

 

Figure 2.1.2: The simple augmented BN with only one hypothesis node X 

Obviously, P(X=1) = E(F) where E(F) is the expectation of F 

Proof: Owing to the law of total probability 
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The ultimate purpose of Bayesian inference is to consolidate a hypothesis (namely, variable) by collecting evidences. 

Suppose we perform M trials of a random process, the outcome of u
th

 trial is denoted X
(u)

  considered as evidence 

variable whose probability P(X
(u) 

= 1 | f) = f. So, all X
(u)

 are conditionally dependent on F. The probability of variable X, 

P(X=1) is learned by these evidences. 

We denote the vector of all evidences as D = (X
(1)

, X
(2)

,…, X
(M)

) which is also called the sample of size M. Given 

this sample, β(f) is called the prior density function, and P(X
(u)

 = 1) = a/N (due to formula 3.1) is called prior probability 

of X
(u)

. It is necessary to determine the posterior density function β(f|D) and the posterior probability of X, namely 

P(X|D). The nature of this process is the parameter learning. Note that P(X|D) is referred as P(X
(M+1)

 | D). 

 

 

Figure 2.1.3: The sample D=(X
(1)

, X
(2)

,…, X
(M)

) size of M 

F 

β(f; a,b) and f have 

space [0,1] 

X 

P(X=1 | f) = f 

X
(1) 

P(X
1
|f)=f 

X
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P(X
2
|f)=f 

X
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P(X
M
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We only surveyed in the case of binomial sample, in other words, D having binomial distribution is called binomial 

sample and the network in figure 3 becomes a binomial augmented BN. Then, suppose s is the number of all evidences 

X
(i)

 which have value 1 (success), otherwise, t is the number of all evidences X
(j)

 which have value 0 (failed). Of course, 

s + t = M. 

Owing the law of total probability, we have 

  

)ts  to(due     
)()(

)()(

M)(N

(N)

2.1.3)  formula  to(due      
)(

)()(

)()(

)(

)1(
)()(

)(

2.1.1)  formula (applying   )1(
)()(

)(
)1(

)()1())1((

1

1

0

1

11

1

0

1

0

M
ba

tbsa

tsba

tbsa

ba

N

dfff
ba

N

dfff
ba

N
ff

dffffffE

tbsa

bats

tsts










































 

                          (2.1.6) 

And, 

                            
ts

M

i

itsss

M

i

i

fffXPffEdffff

dfffXPdfffDDP

)1()|(  todue  , ))1(()()1(

)()|()()|Pr()(

1

1

0

1

0 1

1

0

















                       (2.1.7) 

2.2 Parameter Learning 

Parameter learning play a vital role to compute the posterior density function. Now, we need to compute the posterior 

density function β(f|D) and the posterior probability P(X=1|D). It is essential to determine the probability distribution of 

X. 
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Then the posterior density function is β(f; a+s, b+t) where the prior density function is β(f; a, b). According to formula 

2.1.4, the posterior probability: 

                                                  P(X=1|D) = E( β(f|D) ) = 
MN

sa

tbsa

sa









                                                      (2.2.2) 

In general, you should merely engrave the formula 2.1.1, 2.1.4, 2.2.1, 2.2.2 and the way to recognize prior density 

function, prior probability of X and posterior density function, posterior probability of X, respectively on your memory. 

2.3 Expanding Augmented Bayesian Network with Multi-Hypothesis Nodes 

Suppose we have a BN with two binary random variables and there is conditional dependence assertion between these 

nodes. See the network and CPT (s) in the figure below 

 

 

Figure 2.3.1: (a) Bayesian network and (b) expended augmented Bayesian network 

For every node (variable) Xi, we add dummy parent nodes to Xi, obeying two ways below: 

 If Xi has no parent (not conditionally dependent on any others), we add only one dummy variable denoted Fi1 

having the probability density function β(fi1; ai1, bi1) so as to: P(Xi=1|fi1)= fi1 

 If Xi has a set of ki parents and each parent pail (l= ik,1 ) is binary, we add a set of ci=2ki dummy variables Fi = 

{fi1, fi2,…,
iic

f }, in turn, instantiations of parents PAi= {pai1, pai2, pai3,…, 
iic

pa }. In other words, ci denotes the 

number of instantiations of the parents PAi. We have  
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f )=fij. 
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All fij have no parent and are mutually independent, so, β(fi1, fi2,…, 
iic

f ) = β(fi1) β(fi2)… β(
iic

f ). Besides this local 

parameter independence, we have the global parameter independence if reviewing all variables Xi s, such below: 

β(F1, F2,…, Fn)= β(f11, f12,…, 
inic

f )= β(fi1) β(fi2)… β(
inic

f ) 
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    1/2           1/2 
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β(f21; 1, 1) (b) 



International Journal of Information Technology & Operations Management                                                                                                 

Vol. 1, No. 2, May 2013, PP: 11 – 28, ISSN:   2328 - 8531 (ONLINE)                                                                                                                 

Available online at http://www.acascipub.com/Journals.php 

16 

Copyright © www.acascipub.com, all rights reserved.  

All variables Xi and their dummy variables form the expended augmented BN representing the trust BN in figure 4. In 

the trust BN, the conditional probability of variable Xi with the instantiation of its parent 
ij

pa , in other words, the ij
th

 

conditional distribution is given by P(Xi=1|
ij

pa =1) = E(Fij)=
ij

ij

N

a
 (3.8), that‟s to say the expected value of Fij. 

Proof: We have following equation  
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Suppose we perform M trials of random process, the outcome of i
th

 trial which is BN like figure 2.3.1 is represented as a 

random vector 
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X  containing all hypothesis variables in network. X
(u)

 is also called evidence vector (or 

evidence, briefly). M trials constitute the sample of size M which is the set of random vectors denoted as D={X
(1)

, 

X
(2)

,…, X
(M)

}. D is also called evidence matrix. We review only in case of binomial sample; it means that D is the 

binomial BN sample of size M. For example, this sample corresponding to the network in figure 4 is showed below: 

 

Figure 2.3.2: Expanded binomial BN sample of size M 

After occurring M trial, the augmented BN was updated and dummy variables‟ density functions and hypothesis 

variables‟ conditional probabilities changed. We need to compute the posterior density function β(fij|D) of each dummy 
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variable Fij and the posterior condition probability P(Xi=1| 1
ij

pa , D) of each variable Xi. Note that the samples X
(u)

 s 

are mutually independent with all given Fij. We have, 
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where 

- ci is the number of instances of Xi
(u)

 „s parents. In binary case, each Xi
(u)

 (s) parent has two instances/values, 

namely, 0 and 1. 

- sij, respective to fij, is the number of all evidences that variable Xi = 1 and 
ij

pa = 1  

- tij, respective to fij, is the number of all evidences that variable Xi = 1 and 
ij

pa = 0. 
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where Nij=aij+bij and Mij=sij+tij 

2.4 Updating Posterior Density Function with Multi-Node Bayesian Network 
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Proof: In the light of Baye‟s law we have 
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According to formula 2.2.2 and 2.4.1,  
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In short, in case of binomial distribution, if we have the real/trust BN embedded in the expanded augmented network 

such as figure 3.4 and each dummy node Fij has a prior beta distribution β(fij; aij, bij) and each hypothesis node Xi has the 

prior conditional probability P(Xi=1| 1
ij

pa )=E(β(fij))=
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a
, the parameter learning process based on a set of 

evidences is to update the posterior density function β(fij|D) and the posterior conditional probability 
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Example 2.4.1: Suppose we have the set of 5 evidences D={X
(1)

, X
(2)

, X
(3)

, X
(4)

, X
(5)

} owing to network in figure 2.3.1 

 x1 x2 

X
(1) X1

(1) 
= 1 X2

(1)
 = 1 

X
(2) X1

(2) 
= 1 X2

(2)
 = 1 

X
(3) X1

(3) 
= 1 X2

(3)
 = 1 

X
(4) X1

(4) 
= 1 X2

(4)
 = 0 

X
(5) X1

(5) 
= 0 X2

(5)
 = 0 

Table 2.4.1: Set of evidences D corresponding to 5 trials (sample of size 5) 
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Note that the first evidence 
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X
X implies that variable X2=1 given X1=1 occurs in the first trial. We need to 

compute all posterior density functions β(f11|D), β(f21|D), β(f22|D) and all conditional probabilities P(X1=1), 

P(X2=1|X1=1), P(X2=1|X1=0) from prior density functions β(f11; 1,1), β(f21; 1,1), β(f22; 1,1). In fact, 

s11=1+1+1+1+0=4 t11=0+0+0+0+1=1 

s21=1+1+1+0+0=3 t21=0+0+0+0+1=1 

s22=0+0+0+0+0=0 t21=0+0+0+0+1=1 

 

β(f11|D) = β(f11; a11+s11, b11+t11)= β(f11; 1+4, 1+1)= β(f11; 5, 2) 

β(f21|D) = β(f21; a21+s21, b21+t21)= β(f21; 1+3, 1+1)= β(f11; 4, 2) 

β(f22|D) = β(f22; a22+s22, b22+t22)= β(f22; 1+0, 1+1)= β(f11; 1, 2) 

and P(X1=1), P(X2=1|X1=1), P(X2=1|X1=0) are expectations of  β(f11|D), β(f21|D), β(f22|D). Then, 

P(X1=1)= 
7

5

25

5



 P(X2=1|X1=1)= 

3

2

24

4



 P(X2=1|X1=0)= 

3

1

21

1



 

 

Network in figure 2.3.1 changed as follows: 

 

Figure 2.4.2: Updated version of BN (a) and augmented BN (b) in figure 2.3.1 

 

2.5 Parameter Learning in Case of Data Missing 

In practice there are some evidences in D such as X
(u)

 (s) which lack information and thus, it stimulates the question 

“How to update network from data missing”. We must address this problem by artificial intelligence techniques, namely, 

expectation maximization (EM) algorithm – a famous technique solving estimation of data missing. 

 

Example 2.5.1: Like above example, we have the set of 5 evidences D={X
(1)

, X
(2)

, X
(3)

, X
(4)

, X
(5)

} along with network in 

figure 4 but the evidences X
(2)

 and X
(5)

 have not data yet. 

 

X1 P(X1=1)    P(X1=0) 

 

    5/7           2/7 

X2 

 X1    P(X2=1)  

 

1    2/3 
  0        1/3 

(a) 

X1 X2 

F11 
β(f11; 5, 2) 

F22 

β(f22; 1, 2) 

F21 

β(f21; 4, 2) (b) 
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 x1 x2 

X
(1) X1

(1) 
= 1 X2

(1)
 = 1 

X
(2) X1

(2) 
= 1 X2

(2)
 = v1?  

X
(3) X1

(3) 
= 1 X2

(3)
 = 1 

X
(4) X1

(4) 
= 1 X2

(4)
 = 0 

X
(5) X1

(5) 
= 0 X2

(5)
 = v2? 

Table 2.5.1: Set of evidences D (for network in figure 4) with data missing 

As known, s21 , t21 and s22 , t22 can‟t be computed directly, it means that it is not able to compute directly the posterior 

density functions β(f21|D) and β(f22|D). In evidence X
(2)

,  v1 must be determined. Obviously, v1 obtains one of two values 

which are according to two situations respectively: 

- X1
(2) 

= 1 and X2
(2)

=1, it is easy to infer that v1=P(X2
(2)

=1|X1
(2) 

= 1)=E(β21)=
2121

21

ba

a


= ½ 

- X1
(2) 

= 1 and X2
(2)

=0, it is easy to infer that v1=P(X2
(2)

=1|X1
(2) 

= 0)=E(β22)=
2222

22

ba

a


= ½ 

We split X
(2)

 into two X’
(2)

 (s) corresponding to two above situations in which the probability of occurrence of X2=1 

given X1=1 is estimated as ½ and the probability of occurrence of X2=0 given X1=1 is also considered as ½. We perform 

similarly this task for X
(5)

. 

 X1 x2 

X
(1) X1

(1) 
= 1 X2

(1)
 = 1 

X
‘(2) X1

‘(2) 
= 1 X2

‘(2)
 = 1/2 

X
‘(2)

 X1
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X
(3) X1
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= 1 X2
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(4) X1
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‘(5)
 = 1/2 

X
‘(5) X1

‘(5) 
= 0 X2

‘(5)
 = 1/2 

Table 2.5.2: New split evidences D’ for network in figure 2.4.2 

So, we have 
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 where s
’
21, t

’
21, s

’
22, t

’
22 are the counts in D

’
. Then 

β(f21|D)= β(f21; a21+s’21, b21+t’21)= β(f21;1+5/2, 1+3/2)= β(f21;7/2, 5/2) 

β(f22|D)= β(f22; a22+s’22, b22+t’22)= β(f22;1+1/2, 1+1/2)= β(f22;3/2, 3/2) 

P(X2=1| X1=1)=E(β(f21|D))=
12

7

2/52/7

2/7



 P(X2=0| X1=1)=E(β(f22|D))=

2

1

2/32/3

2/3



 

 

If there are more evidences, this task repeated more and more brings out the EM algorithm having two steps. 

1. Step 1. We compute s
’
ij and t

’
ij based on the expected value of given β(fij), s

’
ij=E(β(fij)) and t

’
ij=1- E(β(fij)). 

Next, replacing missing data by s
’
ij and t

’
ij . This step is called Expectation step.  

2. Step 2. We determine the posterior density function fij
 
by computing its parameters aij=aij+sij and bij=bij+tij. 

Note that sij and tij are recomputed absolutely together on occurrence of s
’
ij and t

’
ij. Terminating algorithm if the 
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stop condition (for example, the number of iterations approaches k times) becomes true, otherwise, reiterating 

step 1. This step is called the Maximization step. 

After k
th

 iteration, we have 
)()(

)(

limlim
k

ijij

k

ijij

k

ijij

k
ij

k tbsa

sa
nExpectatio







which will approach a certain limit. Don‟t worry 

about the case of infinite iterations; we will obtain approximate s
’
ij, t

’
ij, posterior fij if k is large enough due to certain 

value of 
ij

k
nExpectatio


lim  

3. Structure Learning  

As discussed in Maurya et al. [5], directed acyclic graph (DAG) that contain the same given nodes V are Markov 

equivalent if they satisfy Markov condition and have the same d-separations. In other words, they entail the same 

conditional independences and their joint conditional probabilities are identical. Let the pattern gp represent this Markov 

equivalent DAG (s). Such pattern gp is called Markov equivalent class. Of course given a set of nodes V, there are a lot 

of equivalent classes. Let GP be random variable whose values are pattern gp. The basic idea of structure learning 

approaches is to find out the pattern gp that satisfy some condition best. Instead of searching many individual DAG 

According to given condition, there are two main learning approaches: 

 

 Score-based approach: For each pattern gpGP, the gp which gains the maximal scoring criterion score(D,gp) 

given training data set D is the best gp. Because the essence of score-based approach is find out the most likely 

structure, it is also called model selection approach. 

 Constraint-based approach: Given a set of conditional independences (a set of d-separations), the best gp is the 

DAG which satisfy Markov condition overall and only these conditional independences. Such independences 

play the role of the “door latch” for learning algorithm. 

 

Note that in structure learning context, Bayesian network or pattern gp is mentioned as a DAG. 

3.1 Score-Based Approach 

Given a set of random variables (nodes) V = {X1, X2,…, Xn}, let (G, P) be possible Bayesian network where P is joint 

conditional probability density and G=(V, E) is the DAG. Let (G, F
(G)

,, 
(G)

) be the augmented BN with equivalent 

sample size N where F(G) is augmented variables (nodes) attached to every nodes in V and  (G) represents beta 

distributions for augmented (see section about parameter learning). Pattern gp also represents Markov equivalent 

augmented BN. Scored-based approach has three following steps: 

 

1. Step 1. Suppose all augmented BN (s) has the same equivalent sample size N. 

2. Step 2. Let ri be the number of possible values of variable Xi. If Xi is binary then ri = 2. Let qi be the number of 

distinct instantiations of parents of Xi. For example, if Xi and its parents are binary and Xi have 1 parents then qi = 2. 

All augmented variables Fij representing the conditional probability of Xi given instantiation j of its parent are 

assigned to uniform distribution according to equivalent sample size N: 

ii

ijk
qr

N
a   

3. Step 3. Given D={X
(1)

, X
(2)

,…, X
(M)

} is the training data set size M, where X
(h)

 is a trial. Note that X
(h)

=(X
(h)

1, 

X
(h)

2,…, X
(h)

n) is a n-dimension vector which is a outcome (instantiation) of variable Xi. X
(h)

i has the same space to Xi. 

Each DAG gp which is connected by variables in V is assigned a value so-called scoring criterion score(D,gp). This 

score is the posterior probability of gp given training data set D. 
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P(gp) is the prior probability of gp. P(D) is constant. 

In practice, score(D,gp) is only dependent on P(D|gp) when P(D) is ignored and P(gp) is initialized subjectively. 
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Which gp gaining maximal score(D,gp) is chosen. 

 

Example 3.1.1: Suppose there are two variables X1, X2, we don‟t know exactly their relationship but the training data D 

is observed as below: 

X1 1 1 1 1 0 0 

X2 0 0 0 1 1 0 

 

Let gp1 be the DAG in which X1 is parent of X2; otherwise let gp2 be the DAG in which X1 and X2 are mutually 

independent. Given the sample size is N = 4 

 

Figure 3.1.1: Augmented Bayesian networks of gp1 (a) and gp2 (b) 

We have: 
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Because score(D,gp2) is larger than score(D,gp2), the equivalent pattern gp1 is chosen as Bayesian network appropriate 

to training data set. 

In above example we recognize that it is difficult to determine all DAG (s). So the score-based approach becomes 

ineffective in case of many variables. The number of DAG (s) which is surveyed to compute scoring criterion gets huge. 

It is impossible to do brute-force searching over DAG (s) space. There are some heuristic algorithms to reduce whole 

DAG (s) space to smaller space so-called candidate set of DAG (s) obeying some restriction, for example, the prior 

ordering of variables. Such heuristic algorithms are classified into approximate learning. The global score can be defined 

as a product of local scores: 
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Where score(D,Xi,PAi) is the local score of Xi given its parents PAi.  
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Let 
)( iPA

q be the number of distinct instantiations of parents of Xi 

The K2 algorithm tries to find out the pattern DAG gp whose each variable Xi maximizes local score score(D,Xi,PAi) 

instead of discovering all DAG (s). It means that K2 algorithm finds out optimal parents PAi of each Xi. Note that it 

expects that the global score will be approached by maximizing each partial local score. K2 algorithm has following 

steps: 

 

 Step 1. Suppose there is an ordering (X1, X2,…, Xn). There is no backward edge, for example, the edge 

Xi←Xj (if exist) where i < j is invalid. Let Pre(Xi) be the set of previous nodes of Xi in ordering. Let PAi is 

parents of Xi. K2‟s mission is to find out PAi for every Xi. Firstly, each PAi (s) is set to be empty and each 

local score(D,Xi,PAi) is initialized with such empty PAi. 

 Step 2. Each Xi is visited according to the ordering. When Xi is visited, which node in Pre(Xi) that 

maximizes the local score(D,Xi,PAi) is added to PAi. 

 Step 3. Algorithm terminates when no node is added to PAi. 

3.2 Constraint-Based Approach 

Given (G, P) let INDP be a set of conditional independences. INDP is considered as the set of constraints. Constraint-

based approach tries to find out the DAG that satisfies INDP based on theory of d-separation. In other words the set of d-

separations of the best DAG pattern are the same as INDP. 

 

Example 3.2.2: Suppose we have V = {X, Y, Z} and INDP = {I(X,Y)}. Because X and Z is n‟t d-separated from any set, 

there must be a link between X and Z. In similar way, there must be a link between Y and Z. We have: 
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Because X–Z–Y is uncoupled chain and there is a d-separation I(X,Y), the chain X–Z–Y should be converged. 

 

If the number of variables is large we need effective algorithms. The simple algorithm includes two steps: 

1. Firstly, the structure of DAG is drafted as “skeleton”. If there is no conditional independence relating to Xi and Xj 

then the link between them is created. So skeleton is the undirected graph which contains variables (nodes) and 

links.  

2. The second step is to determine direction of links by applying four following rules in sequence rule 1, rule 2, rule 3, 

rule 4: 

 Rule 1: If the uncoupled chain X–Z–Y exists and Z isn‟t in any set that d-separate X from Y then this 

chain is assumed convergent: X→Z←Y 

 Rule 2: If the uncoupled chain X→Z–Y exists (having an edge X→Z) then this chain is assumed serial 

path: X→Z→Y. 

 Rule 3: If the edge X→Y caused a directed cycle at a position in network then it is reversed: X←Y. This 

rule is applied to remove directed cycles so that the expected BN is a DAG. 

 Rule 4: If all rules 1, 2, 3 are consumed the all remaining links have arbitrary direction. 

-  

Example 3.2.3:  Suppose we have V = {X, Y, Z, T} and INDP = {I(X,Y), I(X,T), I(Y,T)}. Because there is no conditional 

independence between X and Y, between Z and T, the “skeleton” is drafted as below: 

 

X Y 

Z 

T 

X Y 

Z 

X Y 

Z 
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Applying rule 1: Because the uncoupled chain X–Z–Y exists and Z isn‟t in any set that d-separate X from Y, this chain is 

assumed convergent: X→Z←Y 

 

Applying rule 2: Because the uncoupled chain X→Z–T exists, we have the assumed serial path: X→Z→T. 

 

4. Conclusions 

In this paper, parameter learning and structure learning in Bayesian network inference have been discussed exhaustively. 

The essence of parameter learning and structure learning as two significant domains of Bayesian network Bayesian 

network are presented successfully with numerical illustrations. The parameter learning and structure learning domains 

indicate how to build up Bayesian Network. The ideology of Bayesian Network is to apply a mathematical inference 

tool (namely Bayesian rule) into a graph with expectation of extending and enhancing the ability of such tool so as to 

sole realistic problems, especially diagnosis domain. After reviewing and examining the article on survey report of 

parameter and structure learning in Bayesian network inference, we draw mainly following conclusions: 

 The parameter and structure learning become difficult when training data is missing (not complete). Missing 

data problem is introduced in section 2.5 but its detail goes beyond this report. We expect that we may have a 

chance to discuss about it in connection to some relevant work. 

 The first-order Markov condition has important role in Bayesian network study when there is an assumption 

“nodes are dependent on only their direct parents”. If the first-order Markov condition is not satisfied, many 

inference and learning algorithms go wrong. We think that BN will get more potential and enjoyable if first-

order (Markov) condition is replaced by n-order condition. 

 In the process of developing BN, there are many problems involving in real number (continuous case) and 

nodes dependency, refer Maurya [5]. This report focuses on discrete case when the probability of each node is 

discrete CPT, not continuous PDF. 

X Y 

Z 

T 

X Y 

Z 

T 
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 The Bayesian network discussed here is “static” BN because the temporal relationships among nodes aren‟t 

concerned. The “static” BN is represented at only one time point. Otherwise dynamic Bayesian network (DBN) 

aims to model the temporal relationships among nodes. 

 The process of inference is concerned in time series; in some realistic case this is necessary. However the cost 

of inference and learning in DBN is much higher than BN because the size of DBN gets huge for long-time 

process. Because of the limitation of this report, the algorithm that keeps the size of DBN intact (not changed) 

isn‟t introduced here. 

 Finally, the essence of such algorithm is to take advantage of both Markov condition and knowledge (inference) 

accumulation. Due to the complexity of DBN, we should consider to choose which one (BN or DBN) to apply 

into concrete domain. It depends on domain and purpose chosen by the decision makers. 
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